Supporting Coherence Across a System of Assessment for NGSS

Jonathan Osborne, Stanford University Jill Wertheim, Stanford University/SCALE

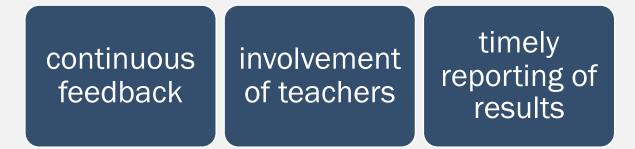
Stanford NGSS Assessment Project (SNAP)

AERA Annual Meeting

April 9, 2019

"Important decisions about individuals should not be made based on a single test score. Policy makers should instead invest in the development of assessment systems that use multiple measures of student performance, particularly when high stakes are attached to the results"

Knowing What Students Know (NRC, 2001) Pg. 310 "Considerable concern has been expressed in the Commission about the artificiality of 'stand-alone' or 'Drop-in from the Sky' tests.... It is recommended that assessment in education move progressively toward the development and use of diversified assessment systems for the generation and collection of educational assessment data."


--Assess, To Teach, To Learn: A Vision for the Future of Assessment, Gordon Commission (2015)

p. 24

Features of High-Quality Assessment Systems

Tight alignment of assessment, curriculum, and teacher development to common standards

a balanced assessment system with challenging, authentic tasks

Darling-Hammond, 2010

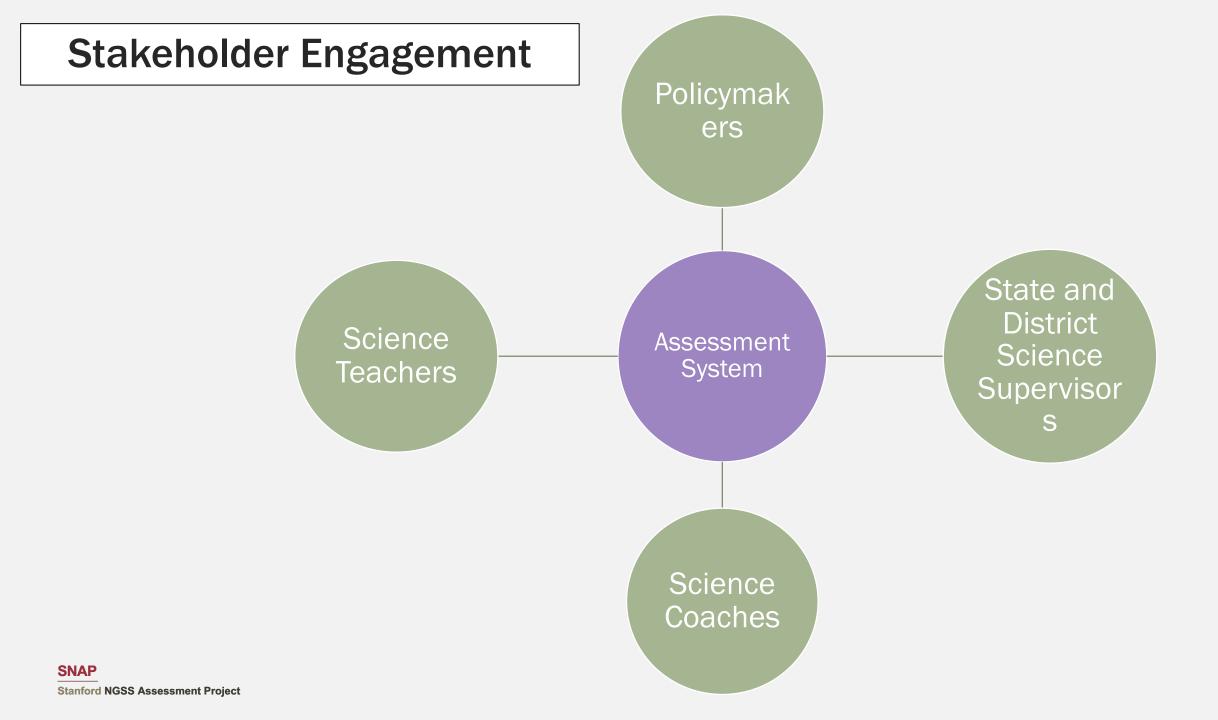
Research \rightarrow Practice

How can researchers support a state in building on research-based practices to develop a system of assessment that can quickly and effectively guide implementation of the vision of science learning underpinning NGSS from policymakers to teachers?

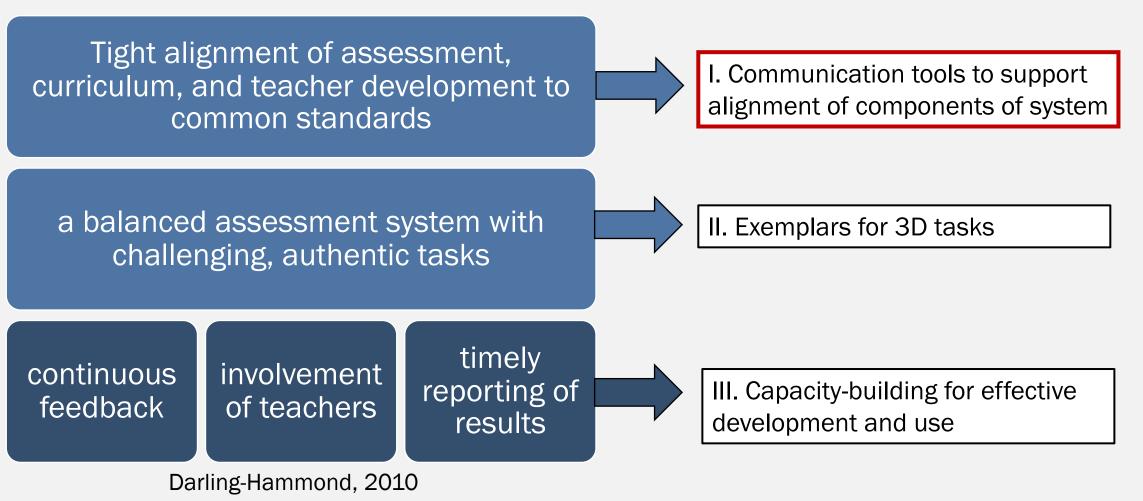
Jonathan Osborne

Ray Pecheone

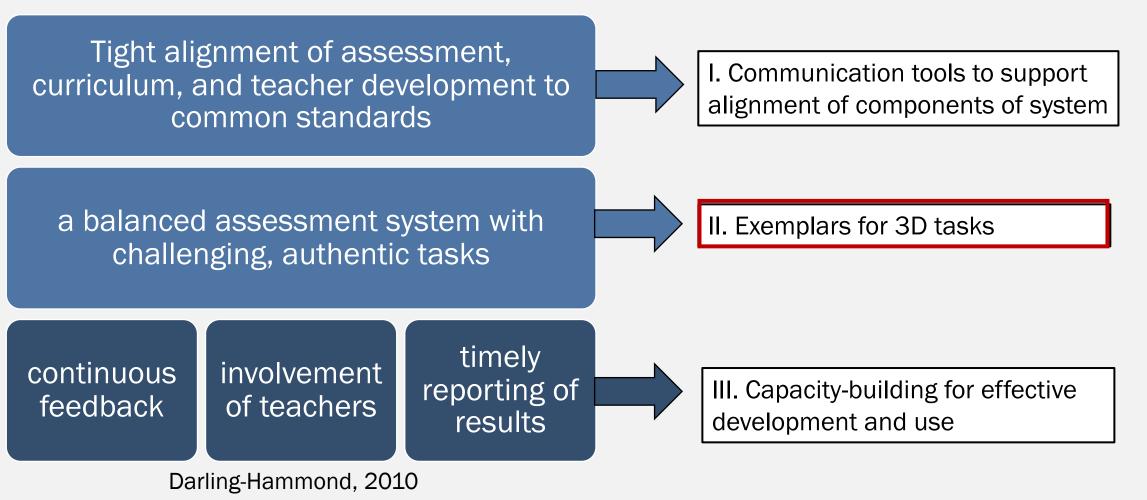
Helen Quinn



Jill Wertheim



Cathy Zozakiewcz


System of assessment

Focus Area I. Communication tools about system design

	Part 1: External Mandated Tests		Part 2: Periodic Classroom Assessments	
	Component A: Multi-item types	Component B: Performance Tasks	Component C: Stand-alone Performance Tasks	Component D: Curriculum Embedded Performance
Grade				Tasks (CEPT)
1 st – 4th			(x)	(x)
5 th	X	x	(x)	(x)
6 th – 7 th			(x)	(x)
8 th	X	x	(x)	(x)
9 th – 10th			(x)	(x)
11 th	X	x	(x)	(x)
12 th				

System of assessment

Focus Area II. Exemplar Assessments

Huge ships, called tankers, carry oil across the ocean. Sometimes the oil in the tankers spills into the ocean. Oil spills can spread out and harm plants and animals nearby. In this task, you are a scientist who is trying to find a way to collect the oil so you can remove it from the ocean.

Oil spill in the ocean

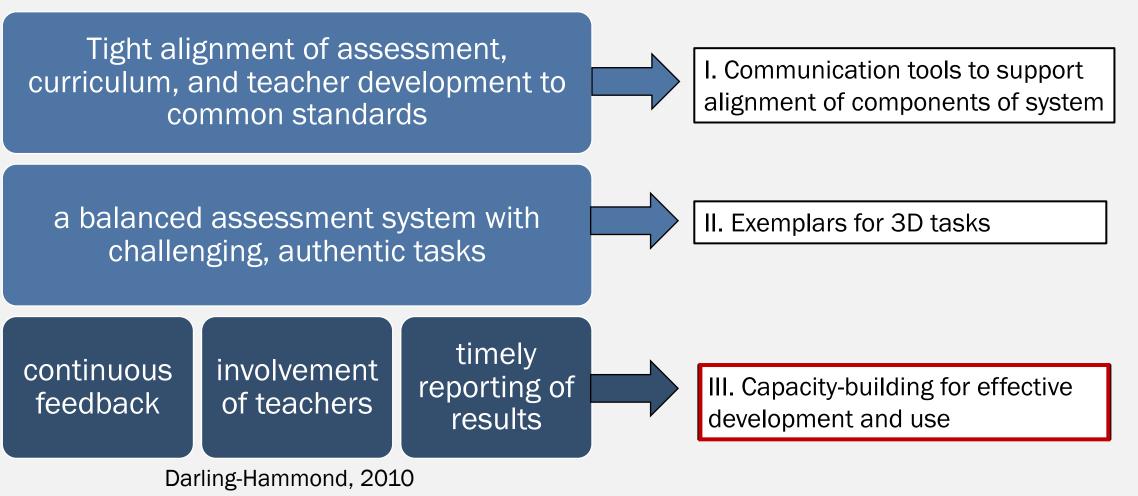
Oil moving toward plant life

In the video your teacher will show you, a scientist, Dr. Warner, is doing an experiment. He is testing the research question: Can magnets be used to collect oil in water?

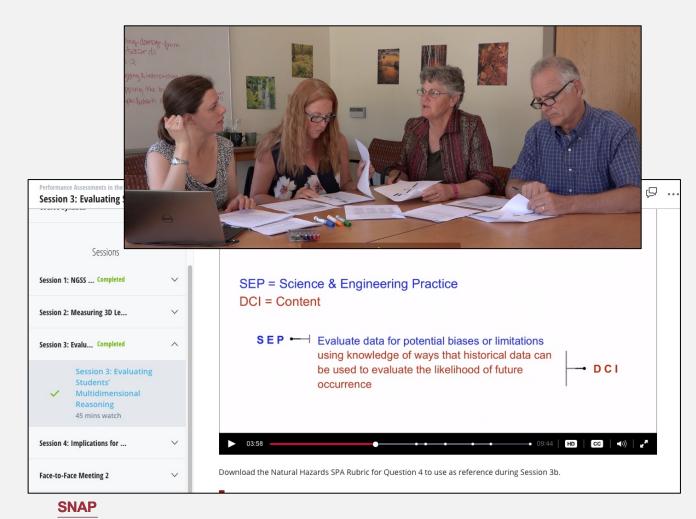
Dr. Warner designed an experiment with these steps:

- 1. Places water in a large plastic tub.
- 2. Pours oil into the water.
- 3. Puts black magnetic powder on the oil.
- 4. Places a large magnet on the side of the plastic tub.

Dr. Warner puts the black powder in a tub with water and oil (left). Then he holds a magnet outside the tub to pull the oil and powder toward it (right).


Answer the following questions to decide if Dr. Warner's solution could be used to collect a lot of oil in the ocean.

SNAP Principals for high-quality NGSS Assessment


- Engage students in sensemaking about real world questions and problems
- Evaluate what students can do with their knowledge
- Foreground students' assets
- Allow for student choice and decision-making
- Integrate peer and teacher feedback

Adapted from SCALE's Criteria for Performance Assessments

System of assessment

Focus Area III. Capacity-building

Principles for effective hybrid professional learning

- Engage in collaborative analysis of student work and planning feedback
- Focus learning around the activities teachers will use in the classroom
- Apply learning to their own students and school context
- Immediate opportunities for practice and feedback

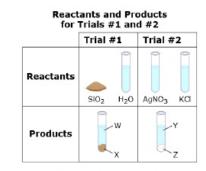
(Wei et al., 2010; Kazemi & Franke, 2004)

A system of science assessment in CA

Results are mixed:

State: Expanded use of complex tasks

Did not use classroom tasks


PA does not look like our models

Sent a clear signal to other stakeholders about importance of PA

Leah is learning to use properties of substances to identify a chemical reaction. She conducts two trials.

For the first trial, she pours silicon dioxide (SiO₂) into water (H₂O).

For the second trial, she pours a silver nitrate $(AgNO_3)$ solution into a test tube with a solution of potassium chloride (KCI). The diagram shows the reactants and products for both trials.

Leah records the properties of these substances before each trial. She also records the properties of the unknown products after the trial. The tables show some of the properties for each substance before and after the trials.

Used in Trial #	Substance	State of Matter	Mass (g)	Color
1	H ₂ O	Liquid	10.0	Colorless
1	SiO ₂	Solid	5.0	Tan
2	KCI	Liquid	12.5	Colorless
2	AgNO ₃	Liquid	25.5	Colorless

Table 2: Properties After the Trials				
Resulted from Trial #	Substance	State of Matter	Mass (g)	Color
1	W	Liquid	10.0	Colorless
1	х	Solid	5.0	Tan
2	Y	Liquid	16.5	Colorless
2	Z	Solid	21.5	White

Leah determines that a chemical reaction occurred in one of her trials. Click the terms that **best** complete the sentence.

A chemical reaction occurred in Trial	 because substances
 have properties that are 	 the reactants.

Classroom Performance Assessments: a closer look

Positive developments

- Development has been focused on districts and schools
- Local agencies are using design, development tools, courses, and exemplar assessments to guide work at the local level
- Much of this work is TEACHER driven and is specifically targeted to informing instruction

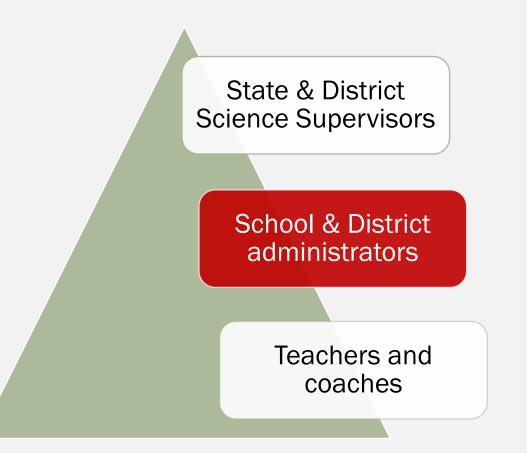
Areas of concern

- Not necessarily supported by administrators/unaware
- Need structures to enable teachers to engage – collaboration time, incentives for other teachers
- Not tied into system, essentially a parallel system aligned to same standards

State Performance Assessment Learning Community (SPA-LC)

28 states considering use of PA for science

Common standards enable use of SNAP capacitybuilding resources (>1500 participants)


Contact:

Jonathan Osborne: <u>osbornej@Stanford.edu</u> Jill Wertheim: <u>jwerthei@Stanford.edu</u> Ray Pecheone: <u>pecheone@stanford.edu</u>

website: snapgse.stanford.edu

S. D. BECHTEL, JR. FOUNDATION STEPHEN BECHTEL FUND STEPHEN BECHTEL FUND STEPHEN BECHTEL FUND

Missing pieces for coherent systems: Professional learning for administrators

Missing pieces for coherent systems

Platform for collaboration

FILTERS	Results: 106 Performance Tasks Sort by:	Search Performance Tasks		
TYPE OF TASK 🕖				
Type of Task 👻	Should Animals Be Kept In Zoos? 🥑 🔺	Cyrobiology 🥑		
SUBJECT	TYPE OF TASK SUBJECT Curriculum Embedded Science	TYPE OF TASK SUBJECT Curriculum Embedded Science		
Science X	Task	Task		
Subject V	GRADE LEVEL SOURCE 3.4	GRADE LEVEL SOURCE 7. 8. 9. 10. 11. 12		
	Literacy Design	Literacy Design		
GRADE LEVEL	Collaborative (LDC) GRADE LEVEL SPAN Elementary (K-5)	Collaborative (LDC) GRADE LEVEL SPAN Middle (6-8)		
Grade Level 🗸	AUTHOR	AUTHOR High (9-12)		
	Sharon K. Thurman	Catherine H. Miller		
GRADE LEVEL SPAN	Angie Howard	Jeanne M. Coherd Shav C. Eli		
Grade Level Span 👻	RATING	Theresa Bennett		
	$\star \star \star \star \star 0/5$	RATING		
Project Certified Ø	While learning about the basic needs, adaptations, and	* * * * * 0/5		
	ecosystems of animals, students will determine whether zoos are beneficial or harmful.	In this module, students will take previously		
HIDE ADVANCED FILTERS	zoos are deneticial or narmtul.	learned concepts of states and properties of matter and		
TASK DURATION	TAGS	expound upon them by examining the field of cryobiology.		
Task Duration	#LDC OPINION/ARGUMENTATION RUBRIC #ANIMALS	Cryobiology is the study of living things at very low		
	#ZOOS #ECOSYSTEM #ENVIRONMENT #ARGUMENTATION	temperatures. This science is filled with many technologica		
STUDENT COLLABORATION LEVEL		advances		
Student Collaboration Level		TAGS		
		#LDC ARGUMENTATION RUBRIC #CYROBIOLOGY #STATES		
CRITICAL ABILITIES		OF MATTER #PROPERTIES OF MATTER #ARGUMENTATIVE		
Critical Abilities 🗸 🗸		ESSAY		
SOURCE				
Source Y				
	Should Stem Cell Research Continue? *	Honey Bee Colony Analysis 🥏		
COURSE	TYPE OF TASK SUBJECT	TYPE OF TASK SUBJECT		
Course	Curriculum Embedded Science Task	Curriculum Embedded Interdisciplinary		
Includes Benchmark Samples	COURSE	Task Mathematics Science		
_	SOURCE Biology Center For Collaborative	SOURCE		
Includes Work Samples	Education (CCE) GRADE LEVEL	Achieve COURSE Algebra 2		
STANDARDS	10 AUTHOR	RATING Biology		
Enter Standard Directly	Amy Troiano GRADE LEVEL SPAN	★ ★ ★ ★ 5/5 GRADE LEVEL		
since standard breedy	Rhonda Fortin High (9-12) Alex MacPhail	10, 11		
Help Me Select A Standard	Alex MacPhail Cari Sbardella	GRADE LEVEL SPAN		
		High (9-12)		
	RATING	In this task, the students mathematically model changes in		
		the bee colony numbers from the United States and from		
	Based on their individual research conducted to answer the essential question: "Should stem cell research continue,"	two individual states, California and South Dakota.		
	students will take a position regarding stem cell	Students then use their constructed mathematical models		
	research. Students will have a choice in the product they create to educate the public on stem cell research, to	to describe factors affecting the bee colony populations.		

Missing pieces for coherent systems Scoring vs grading

Goals for NGSS

Develop appreciation of the beauty and wonder of science Have sufficient knowledge of science and engineering to engage in discussions

Are careful consumers of scientific and technological information

Have skills to enter careers of their choice

NRC, 2012